
Infinite Sequences  

and Series 



11.10 
Taylor and Maclaurin 

Series 



3 3 

Taylor and Maclaurin Series 

We start by supposing that f is any function that can be 

represented by a power series 

 

       f (x) = c0 + c1(x – a) + c2(x – a)2 + c3(x – a)3 + c4(x – a)4   

                 + . . . | x – a | < R 
 

Let’s try to determine what the coefficients cn must be in 

terms of f. 

 

To begin, notice that if we put x = a in Equation 1, then all 

terms after the first one are 0 and we get 
 

         f (a) = c0 
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Taylor and Maclaurin Series 

We can differentiate the series in Equation 1 term by term: 
 

           f (x) = c1 + 2c2(x – a) + 3c3(x – a)2 + 4c4(x – a)3 + . . .       

                               | x – a | < R 
 

and substitution of x = a in Equation 2 gives 
 

     f  (a) = c1 
 

Now we differentiate both sides of Equation 2 and obtain 
 

          f (x) = 2c2 + 2  3c3(x – a) + 3  4c4(x – a)2 + . . .      

                               | x – a | < R 
 

Again we put x = a in Equation 3. The result is 
 

          f  (a) = 2c2 
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Taylor and Maclaurin Series 

Let’s apply the procedure one more time. Differentiation of 

the series in Equation 3 gives 

 

f ''' (x) = 2  3c3 + 2  3  4c4(x – a) + 3  4  5c5(x – a)2 +  

              . . . | x – a | < R 
 

and substitution of x = a in Equation 4 gives 
 

   f ''' (a) = 2  3c3 = 3!c3 
 

By now you can see the pattern. If we continue to 

differentiate and substitute x = a, we obtain 
 

  f (n) (a) = 2  3  4  . . .  ncn = n!cn 
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Taylor and Maclaurin Series 

Solving this equation for the nth coefficient cn, we get 

 

 

This formula remains valid even for n = 0 if we adopt the 

conventions that 0! = 1 and f 

(0) = f. Thus we have proved 

the following theorem. 
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Taylor and Maclaurin Series 

Substituting this formula for cn back into the series, we see 

that if f has a power series expansion at a, then it must be 

of the following form. 

 

 

 

 

 

The series in Equation 6 is called the Taylor series of the 

function f at a (or about a or centered at a). 



8 8 

Taylor and Maclaurin Series 

For the special case a = 0 the Taylor series becomes 

 

 

 

 

This case arises frequently enough that it is given the 

special name Maclaurin series. 
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Example 1 

Find the Maclaurin series of the function f (x) = ex and its 

radius of convergence. 

 

Solution: 

If f (x) = ex, then f 

(n)(x) = ex, so f 

(n)(0) = e0 = 1 for all n. 

Therefore the Taylor series for f at 0 (that is, the Maclaurin 

series) is 



10 10 

Example 1 – Solution 

To find the radius of convergence we let an = xn/n!. 

 

Then 

 

 

 

 

so, by the Ratio Test, the series converges for all x and the 

radius of convergence is R =     . 

 

cont’d 
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Taylor and Maclaurin Series 

The conclusion we can draw from Theorem 5 and                 

Example 1 is that if ex has a power series expansion at 0, 

then 
 

 
 

 

So how can we determine whether ex does have a power 

series representation? 
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Taylor and Maclaurin Series 

Let’s investigate the more general question: Under what 

circumstances is a function equal to the sum of its Taylor 

series? 

 

In other words, if f has derivatives of all orders, when is it 

true that 

 

 

 

As with any convergent series, this means that f (x) is the 

limit of the sequence of partial sums. 
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Taylor and Maclaurin Series 

In the case of the Taylor series, the partial sums are 

 

 

 

 

 

Notice that Tn is a polynomial of degree n called the  

nth-degree Taylor polynomial of f at a. 
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Taylor and Maclaurin Series 

For instance, for the exponential function f (x) = ex, the 

result of Example 1 shows that the Taylor polynomials at 0                

(or Maclaurin polynomials) with n = 1, 2, and 3 are 
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Taylor and Maclaurin Series 

The graphs of the exponential function and these three  

Taylor polynomials are drawn in Figure 1. 

 

Figure 1 

As n increases, Tn (x) appears to approach ex 

in Figure 1. This suggests that ex is equal to 

the sum of its Taylor series. 
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Taylor and Maclaurin Series 

In general, f (x) is the sum of its Taylor series if 
 

 
 

If we let 
 

 Rn(x) = f (x) – Tn(x)    so that      f (x) = Tn(x) + Rn(x) 
 

then Rn(x) is called the remainder of the Taylor series. If 

we can somehow show that limn     Rn(x) = 0, then it 

follows that 
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Taylor and Maclaurin Series 

We have therefore proved the following. 

 

 

 

 

 

In trying to show that limn     Rn(x) = 0 for a specific function f, 

we usually use the following Theorem. 
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Taylor and Maclaurin Series 

To see why this is true for n = 1, we assume that  

| f (x) |  M. In particular, we have f (x)  M, so for  

a  x  a + d we have 

 

 

 

An antiderivative of f  is f , so by Part 2 of the Fundamental 

Theorem of Calculus, we have 

 

      f (x) – f (a)  M (x – a)    or    f (x)  f (a) + M (x – a) 
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Taylor and Maclaurin Series 

Thus 

 

 

 

 

 

 

 

But R1 (x) = f (x) – T1 (x) = f (x) – f (a) – f (a)(x – a). So 
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Taylor and Maclaurin Series 

A similar argument, using f (x)  –M, shows that 

 

 

 

So 

 

Although we have assumed that x > a, similar calculations 

show that this inequality is also true for x < a. 
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Taylor and Maclaurin Series 

This proves Taylor’s Inequality for the case where n = 1. 

The result for any n is proved in a similar way by integrating  

n + 1 times. 

 

In applying Theorems 8 and 9 it is often helpful to make 

use of the following fact. 

 

 

 
 

This is true because we know from Example 1 that the 

series  xn/n! converges for all x and so its nth term 

approaches 0. 
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Example 2 

Prove that ex is equal to the sum of its Maclaurin series. 

 

Solution: 

If f (x) = ex, then f 
(n + 1)(x) = ex for all n. If d is any positive 

number and | x |  d, then | f 
(n + 1)(x) | = ex  ed. 

 

So Taylor’s Inequality, with a = 0 and M = ed, says that 
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Example 2 – Solution 

Notice that the same constant M = ed works for every value 

of n. But, from Equation 10, we have 

 

 

 

It follows from the Squeeze Theorem that  

lim n     | Rn(x) | = 0 and therefore limn     Rn(x) = 0 for all 

values of x. By Theorem 8, ex is equal to the sum of its 

Maclaurin series, that is, 

cont’d 
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Taylor and Maclaurin Series 

In particular, if we put x = 1 in Equation 11, we obtain the 

following expression for the number e as a sum of an 

infinite series: 
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Example 8 

Find the Maclaurin series for f (x) = (1 + x)k, where k is any 

real number. 
 

Solution: 

Arranging our work in columns, we have 

    f (x) = (1 + x)k                            f (0) = 1  

  f  (x) = k(1 + x)k – 1                            f  (0) = k 

  f  (x) = k(k – 1)(1 + x)k 
 
– 

 
2 

 
       

 
       

  
   

 
  f  (0) = k(k – 1) 

 f ''' (x) = k(k – 1)(k – 2)(1 + x)k – 3           f ''' (0) = k(k – 1)(k – 2) 

             .                                                                                                     .  

             .                                                                                                     . 

             .                                                                                                      . 

 f(n) (x) = k(k – 1) . . . (k – n + 1)(1 + x)k – n f(n)(0) = k(k – 1) . . .     

             (k – n + 1) 
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Example 8 – Solution 

Therefore the Maclaurin series of f (x) = (1 + x)k is 

 

 

 

 

This series is called the binomial series. 

 

Notice that if k is a nonnegative integer, then the terms are 

eventually 0 and so the series is finite. For other values of k 

none of the terms is 0 and so we can try the Ratio Test. 

cont’d 
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Example 8 – Solution 

If its nth term is an, then  

 

 

 

 

 

 

 

 

Thus, by the Ratio Test, the binomial series converges if  

| x | < 1 and diverges if | x | > 1. 

cont’d 
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Taylor and Maclaurin Series 

The traditional notation for the coefficients in the binomial 

series is 

 

 

 

and these numbers are called the binomial coefficients. 

 

The following theorem states that (1 + x)k is equal to the 

sum of its Maclaurin series. 
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Taylor and Maclaurin Series 

It is possible to prove this by showing that the remainder 

term Rn (x) approaches 0, but that turns out to be quite 

difficult. 
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Taylor and Maclaurin Series 

Although the binomial series always converges when  

| x | < 1, the question of whether or not it converges at the 

endpoints, 1, depends on the value of k. 

 

It turns out that the series converges at 1 if –1 < k  0 and 

at both endpoints if k  0.  

 

Notice that if k is a positive integer and n > k, then the 

expression for       contains a factor (k – k), so              for  

n > k.  

 

This means that the series terminates and reduces to the 

ordinary Binomial Theorem when k is a positive integer. 
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Taylor and Maclaurin Series 

We collect in the following table, for future reference, some 

important Maclaurin series that we have derived in this 

section and the preceding one. 

Table 1 

Important Maclaurin Series and their Radii of Convergence 



32 32 

Multiplication and Division of   

Power Series 
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Example 13 

Find the first three nonzero terms in the Maclaurin series 

for (a) ex sin x and (b) tan x. 

 

Solution: 

(a) Using the Maclaurin series for ex and sin x in Table 1,   

      we have 
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Example 13 – Solution 

    We multiply these expressions, collecting like terms just   

 as for polynomials: 

cont’d 
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Example 13 – Solution 

Thus 

 

(b) Using the Maclaurin series in Table 1, we have 

cont’d 
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Example 13 – Solution 

We use a procedure like long division: 

 

 

 

 

 

     

 

 

 

Thus 

cont’d 


